Question
A gun fires a bullet at the exact moment you drop a bullet from the same height. Which bullet hits the ground first?
Answers
1. The bullet fired from the gun
2. The bullet dropped from the fired gun barrel height
3. Both hit the ground at the same time
Answer 3
Chapter 6. Newton's Laws in Three Dimensions6.1 Forces Have No Perpendicular EffectsSuppose you could shoot a rifle and arrange for a second bullet to be dropped from the same height at the exact moment when the first left the barrel. Which would hit the ground first? Nearly everyone expects that the dropped bullet will reach the dirt first, and Aristotle would have agreed. Aristotle would have described it like this. The shot bullet receives some forced motion from the gun. It travels forward for a split second, slowing down rapidly because there is no longer any force to make it continue in motion. Once it is done with its forced motion, it changes to natural motion, i.e. falling straight down. While the shot bullet is slowing down, the dropped bullet gets on with the business of falling, so according to Aristotle it will hit the ground first.
a / A bullet is shot from a gun, and another bullet is simultaneously dropped from the same height. 1. Aristotelian physics says that the horizontal motion of the shot bullet delays the onset of falling, so the dropped bullet hits the ground first. 2. Newtonian physics says the two bullets have the same vertical motion, regardless of their different horizontal motions.
Luckily, nature isn't as complicated as Aristotle thought! To convince yourself that Aristotle's ideas were wrong and needlessly complex, stand up now and try this experiment. Take your keys out of your pocket, and begin walking briskly forward. Without speeding up or slowing down, release your keys and let them fall while you continue walking at the same pace.
You have found that your keys hit the ground right next to your feet. Their horizontal motion never slowed down at all, and the whole time they were dropping, they were right next to you. The horizontal motion and the vertical motion happen at the same time, and they are independent of each other. Your experiment proves that the horizontal motion is unaffected by the vertical motion, but it's also true that the vertical motion is not changed in any way by the horizontal motion. The keys take exactly the same amount of time to get to the ground as they would have if you simply dropped them, and the same is true of the bullets: both bullets hit the ground simultaneously.
These have been our first examples of motion in more than one dimension, and they illustrate the most important new idea that is required to understand the three-dimensional generalization of Newtonian physics:
Forces have no perpendicular effects.
When a force acts on an object, it has no effect on the part of the object's motion that is perpendicular to the force.
In the examples above, the vertical force of gravity had no effect on the horizontal motions of the objects. These were examples of projectile motion, which interested people like Galileo because of its military applications. The principle is more general than that, however. For instance, if a rolling ball is initially heading straight for a wall, but a steady wind begins blowing from the side, the ball does not take any longer to get to the wall. In the case of projectile motion, the force involved is gravity, so we can say more specifically that the vertical acceleration is 9.8 m/s2, regardless of the horizontal motion.
self-check: In the example of the ball being blown sideways, why doesn't the ball take longer to get there, since it has to travel a greater distance? (answer in the back of the PDF version of the book)
Taken from here:
Light and MatterA picture is available there too.